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Abstract. Self-similar structures of river networks have been quantified as diverse scaling laws. Among them we investigated 

a power functional relationship between the apparent drainage density a and the pruning area Ap with an exponent  We 10 

analytically derived the relationship between  and other scaling exponents known for fractal river networks. The analysis of 

14 real river networks covering diverse range of climate conditions and free-flow connectivity levels supports our derivation. 

We further linked  with non-integer fractal dimensions found for river networks. Synthesis of our findings through the lens 

of fractal dimensions provides an insight that the exponent  has fundamental roots in fractal dimension for the whole river 

network organization. 15 

1 Introduction 

Since first proposed by Horton (1945), the drainage density  has long been recognized as an important metric to describe 

geomorphological and hydrological characteristics of a catchment. Defined as  = LT / A where A is the constant catchment 

area,  is a function of the total channel length LT in a catchment. Alternatively,  is a function of the channel forming area Ao 

(also called the source area or the critical contributing area) (Band, 1986; Montgomery and Dietrich, 1988; Tarboton et al., 20 

1988), which is directly related to LT. The variation of  among catchments is associated with the climatic condition, which 

can be represented by measures such as the precipitation effectiveness index (Melton, 1957; Madduma Bandara, 1974). Ao 

reduces as the catchment becomes wetter, which leads to the expansion of the stream network (greater LT) and vice versa 

(Godsey and Kirchner, 2014; Hooshyar et al., 2015; Durighetto et al., 2020). Therefore, LT and  are inversely related to Ao 

(Tarboton et al., 1991). 25 

On another note, the ‘rate’ at which LT (and so ) varies with Ao is determined by the given topography. The close relationship 

between the main channel length L and the drainage area A is well known as a power function with a positive exponent h 

(Hack, 1957), i.e., 

𝐿 ∝ 𝐴ℎ.              (1) 

Although Eq. (1) provides a clue about the relationship between LT and Ao, they differ in two senses: (1) LT is the total length 30 

counting all tributaries, while L is the length of the main channel only; and (2) L is the length within the area A while LT is the 

length of channels excluded from Ao. LT reduces as Ao increases, while L grows with A (Eq. (1)). 

The usage of the digital elevation models (DEMs) in the river network analysis introduced a constant called the pruning area 

Ap. In extracting a stream network from a DEM, cells of the upslope area A less than Ap are considered as hillslope and excluded 

from the network. For the ideal delineation of a river network, Ap is expected to be Ao. However, Ap can be any arbitrary value 35 

and differs from Ao by definition. If Ap = 0, every DEM cell is considered as channel while Ap can be as large as A for a 

completely dry landscape. As Ap increases, less channels are extracted, resulting in a smaller ‘apparent’ drainage density a. 
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We distinguish a from the real drainage density , accommodating the difference between Ap and Ao. It was found that a 

decreases as Ap grows following a power function (Moglen et al., 1998), i.e., 

𝜌𝑎 ∝ 𝐴𝑝
−𝜂.             (2) 40 

The background described above naturally leads us to the basic question about the physical origin of the power-law Eq. (2) 

and its scaling exponent η. Prancevic and Kirchner (2019) adopted the scaling relation of Eq. (2) in the derivation of the power 

function between LT and the discharge at the catchment outlet Q (Godsey and Kirchner, 2014; Hooshyar et al., 2015; Jensen 

et al., 2017), i.e., LT∝Q, the relationship which quantifies the tendency of stream networks to expand and retreat. They 

expressed the exponent  as the combination of η and two other scaling exponents found in topographic attributes, i.e.,  =  45 

/ ( +  + 1), where  is the power-law exponent relating local channel slope to drainage area called the concavity (Montgomery 

and Foufoula-Georgiou, 1993; Mcnamara et al., 2006), and  is the exponent of a hypothetical power function between valley 

transmissivity and A. Adopting this, we can reason  = ( +  + 1). However, Prancevic and Kirchner (2019) acknowledged 

that the above expression of  does not hold confident generalization across a range of sizes and landscapes, suggesting the 

presence of diverse descriptions for  besides ( +  + 1). Eq. (2) and the exponent η have awaited for deeper investigations. 50 

Moglen et al. (1998) attempted direct DEM analyses to investigate the a–Ap relationships in real river networks. But, Ao and 

Ap were undistinguished and further discussion on η itself was missed in their study. To properly approach the given subject with 

terrain analyses, a greater resolution DEM for catchments of known Ao or blue-lines are needed. It is worth to realize that the 

power-law relationship of Eq. (2) implies fractal network formation. A river network is fractal, and many regular power-laws 

have been reported as characteristic signatures of a naturally evolved river network (Dodds and Rothman, 2000). As the power-55 

law relationship between a and Ap can also serve as a signature reflecting the self-similarity, it is plausible to claim the linkage 

between a–Ap relationship and other power-laws known in natural river networks. In particular, η = 0.5 is anticipated to satisfy 

dimensional consistency in Eq. (2) (Tarboton et al., 1991). But the rough analysis of Moglen et al. (1998) raises a doubt whether 

η estimated from any real catchment meets this consistency. This issue is analogous to the question about the exponent h in Eq. 

(1), which should also be 0.5 to keep consistency in dimension (Hjelmfelt, 1988). In fact, h values reported for natural rivers are 60 

mostly greater than 0.5, i.e., between 0.5 and 0.7 (Hack, 1957; Gray, 1961; Robert and Roy, 1990; Crave and Davy, 1997). 

This has brought the introduction of the fractal dimension (Mandelbrot, 1977). Similarly, we can claim that the dimensional 

inconsistency in Eq. (2), if any, can be resolved by introducing the fractal dimension to express η. 

Here, we aim to corroborate the aforementioned claims and hypothesis about the a–Ap relationship and its exponent η. To this 

end, in the next Sect. 2, we reviewed the scaling relationships known in a river network. Then, we presented analytical 65 

derivation of Eq. (2), and demonstrated how this is related with other power-laws known for a river network. To support our 

argument, many real catchments under the wide range of climate conditions and free-flow connectivity levels were analyzed 

with terrain analysis methods in a thorough manner using high resolution DEMs and trust-worthy blueline data. These are 

described in Sect. 3. With these results, we explored physical meanings embedded in the power-law relationship between a 

and Ap with the notion of fractal dimension in Sect. 4. Summary and conclusions are given in Sect. 5. 70 

2 Cross-Relationships among Scaling Laws  

2.1 Review on scaling laws of a river network 

The river network has been perceived as an archetypal fractal network in nature (Mandelbrot, 1977; Rodríguez-Iturbe and 

Rinaldo, 2001), exhibiting scale-invariant organization. Systematic measures for characterizing structural hierarchy help 

manifest the self-similarity. Horton-Strahler ordering scheme (Horton, 1945; Strahler, 1957) has been popularly employed to 75 
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investigate their structural characters. In this framework, the number, the mean length, and the mean drainage area of -order 

streams in a catchment, stated as 𝑁𝜔 , 𝐿̅𝜔, and 𝐴̅𝜔, respectively, are defined for an order  ranging from 1 to , where  is the 

highest order in the network. There is only one Ω–order stream in a river network (i.e., N=1). Then, the total channel length 

LT used for the definition of the drainage density , is given as 

𝐿𝑇 = ∑ 𝑁𝜔𝐿̅𝜔
Ω
𝜔=1 .            (3) 80 

Following its definition, the length of any lower order stream is excluded in 𝐿̅𝜔. By contrast, 𝐴̅𝜔 includes the drainage area of 

all upstream branches (of  – 1 and lower orders). Therefore, 𝐿̅Ω is neither the upslope length L of a main channel, nor LT, 

while 𝐴̅Ω is identical to the total drainage area of the catchment. To resolve the discrepant definitions of 𝐿̅𝜔 and  𝐴̅𝜔, the 

cumulative mean length was proposed to match the definition of area (Broscoe, 1959) as 

𝛯𝜔 = ∑ 𝐿̅𝑘
𝜔
𝑘=1              (4) 85 

which is an order-discretized approximation of L. Alternatively, to match the definition of length, the eigenarea, also called the 

interbasin area (Strahler, 1964) or the contiguous area (Marani et al., 1991), was proposed as the area directly draining to the –

order stream (Beer and Borgas, 1993). The mean eigenarea 𝐸̅𝜔 of –order streams is 

𝐸̅𝜔 = 𝐴̅𝜔 − 𝐴̅𝜔−1(𝑁𝜔−1/ 𝑁𝜔).           (5) 

The self-similar structure of a river network has been captured through the linear scaling of above quantities (𝑁𝜔, 𝐿̅𝜔, 𝐴̅𝜔, and 90 

𝐸̅𝜔) with  on a semi-log paper (Horton, 1945; Schumm, 1956; Yang and Paik, 2017) as 

𝑁𝜔 = 𝑅𝐵
Ω−𝜔;  𝐿̅𝜔 = 𝐿̅Ω𝑅𝐿

𝜔−Ω;  𝐴̅𝜔 = 𝐴̅Ω𝑅𝐴
𝜔−Ω; and 𝐸̅𝜔 = 𝐸̅Ω𝑅𝐸

𝜔−Ω       (6) 

where RB, RL, RA, and RE are the bifurcation, the length, the area, and the eigenarea ratios, respectively. They are dimensionless 

ratios of quantities between nearby orders, i.e., 𝑅𝐵 = 𝑁𝜔/𝑁𝜔+1, 𝑅𝐿 = 𝐿̅𝜔+1/𝐿̅𝜔, 𝑅𝐴 = 𝐴̅𝜔+1/𝐴̅𝜔, and 𝑅𝐸 = 𝐸̅𝜔+1/𝐸̅𝜔, and 

often called the Horton ratios as a group. They are dependent on each other (Morisawa, 1962; Rosso, 1984; Tarboton et al., 1990) 95 

and typically range as 3 < RB < 5, 1.5 < RL < 3, and 3 < RA < 6 (Smart, 1972), and RE ≈ RL (Yang and Paik, 2017). 

In addition to Eq. (6), power functional relationships between geomorphologic variates have also been found and served as 

evidence of the scale-invariant river network structures. The Hack’s law (Eq. (1)) is a classical principle in this line. Another 

interesting power-law relationship lies in the exceedance probability distributions of upstream area. Using a theoretical 

aggregation model, Takayasu et al. (1988) showed that the exceedance probability distribution of injected mass in a tree 100 

network always follows a power-law. In fact, their model is equivalent to the random-walk model of Scheidegger (1967) 

devised to mimic a river network (Takayasu and Nishikawa, 1986). Replacing the mass (flow) in the aforementioned study 

with the drainage area (which is rational if rainfall is spatially uniform), it leads to the power-law exceedance probability 

distribution of ‘drainage area.’ In a detail, the probability for a randomly designated point within a catchment to have A 

exceeding a reference value δ (0 ≤ δ ≤ 𝐴̅Ω) decreases with δ (Rodríguez-Iturbe et al., 1992a), following a power-law as 105 

𝑃(𝐴 ≥ 𝛿) ∝ 𝛿−𝜀             (7) 

where the exponent ε is reported as between 0.40 and 0.46 for most river networks (Rodríguez-Iturbe et al., 1992a; Crave and 

Davy, 1997). Above two power-laws (Eqs. (1) and (7)) are related as h +  =1 (Maritan et al., 1996), which suggests a trade-

off between the two relationships to form the catchment boundary within a confined 2-d space. 

Two classes of scaling relationships reviewed above, i.e., Horton’s laws (Eq. (6)) and power-law relationships are linked as 110 

shown by La Barbera and Roth (1994), i.e., 

𝜀 = 1 − ℎ =
ln (𝑅𝐵/𝑅𝐿)

ln 𝑅𝐴
 .           (8) 

Two other expressions, comparable to Eq. (8), appear in literature. De Vries et al. (1994) derived  = 1 – ln RL/ln RB, which is 

a special case of Eq. (8) where RB = RA. Empirical studies support that RB is indeed close to RA (Smart, 1972). For a ‘topological’ 
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Hortonian tree where no constraint on stream length in a finite area is given, Veitzer et al. (2003) and Paik and Kumar (2007) 115 

showed that  = ln RB/ln RA – 1. This is another special case of Eq. (8) where RL = RA, the assumption used in the analysis of 

‘topological’ self-similar trees where only connections among nodes matter with no spatial constraint (Paik and Kumar, 2007). 

2.2 Linkage to a–Ap relationship 

Below, we analytically derived the relationship between the pruning area Ap and the resulting apparent drainage density a (Eq. 

(2)), using the scaling relationships reviewed above. Through this investigation, we importantly revealed  = , i.e., the scaling 120 

exponents in Eqs. (2) and (7) are identical. We arrived at the same conclusion from two different approaches, described below. 

2.2.1 Derivation 1 

For the Hortonian tree, Ap can vary in a discrete manner (order-by-order), as we set 𝐴𝑝 = 𝐴̅𝜔. Given that up to -order streams 

are pruned in a river network, the total length after pruning is ∑ 𝑁𝑘𝐿̅𝑘
Ω
𝑘=𝜔+1 , by revising Eq. (3). Replacing 𝑁𝑘  and 𝐿̅𝑘 in this 

equation with Eq. (6) leads to the expression of a as 125 

𝜌𝑎 =
𝐿Ω

𝐴Ω
∑ 𝑅𝐵

Ω−𝑘𝑅𝐿
𝑘−ΩΩ

𝑘=𝜔+1 .           (9) 

Above sum of the given geometric series is 

𝜌𝑎 =
𝐿Ω

𝐴Ω(𝑅𝐵/𝑅𝐿−1)
[(

𝑅𝐵

𝑅𝐿
)

Ω−𝜔

− 1].           (10) 

The logarithm of the term (RB/RL)– in Eq. (10) can be written, using Eq. (6), as 

ln (
𝑅𝐵

𝑅𝐿
)

Ω−𝜔

= (Ω − 𝜔) ln
𝑅𝐵

𝑅𝐿
=

ln (𝐴Ω/𝐴̅𝜔)

ln 𝑅𝐴
ln

𝑅𝐵

𝑅𝐿
=  

ln (𝑅𝐵/𝑅𝐿)

ln 𝑅𝐴
ln

𝐴Ω

𝐴̅𝜔
 .      (11) 130 

Given that 𝐴̅𝜔 = 𝐴𝑝, from Eq. (11) we can state 

(𝑅𝐵 𝑅𝐿⁄ )Ω−𝜔 = (𝐴Ω 𝐴𝑝⁄ )
ln (𝑅𝐵/𝑅𝐿)

ln 𝑅𝐴  .          (12) 

Substituting this into Eq. (10) yields an approximate power-law, i.e., 

𝜌𝑎 =
𝐿Ω

𝐴Ω(𝑅𝐵/𝑅𝐿−1)
[(

𝐴𝑝

𝐴Ω
)

− 
ln (𝑅𝐵/𝑅𝐿)

ln 𝑅𝐴 − 1] ∝ 𝐴𝑝
− 

ln (𝑅𝐵/𝑅𝐿)

ln 𝑅𝐴  .       (13) 

Given that RB ≈ RA > RL (Smart, 1972) for a typical river network, – 1 < –ln (RB/RL)/ln RA < 0. With this range and for Ap << 135 

A, (𝐴𝑝 𝐴Ω⁄ )
− ln (𝑅𝐵/𝑅𝐿) ln 𝑅𝐴⁄

=  (𝐴Ω 𝐴𝑝⁄ )
 ln (𝑅𝐵/𝑅𝐿) ln 𝑅𝐴⁄

≫ 1.  This allows the approximation [(𝐴Ω 𝐴𝑝⁄ )
 ln (𝑅𝐵/𝑅𝐿) ln 𝑅𝐴⁄

−

1] ≈ (𝐴Ω 𝐴𝑝⁄ )
 ln (𝑅𝐵/𝑅𝐿) ln 𝑅𝐴⁄

. Empirical studies suggested Ao < 0.1A to characterize fluvial channel networks (Mcnamara et al., 

2006; Montgomery and Foufoula-Georgiou, 1993), implying the scope of this derivation, i.e., Ap << A, of practical range. 

Comparing Eqs. (2) and (13), we can explicitly express 

𝜂 =
ln (𝑅𝐵/𝑅𝐿)

ln 𝑅𝐴
 .            (14) 140 

This expression is identical to Eq. (8), which implies  = 

2.2.2 Derivation 2 

The conclusion of  = can also be derived by employing the eigenarea (Yang, 2016). Approximating an ω-order sub-

catchment as a rectangle, 𝐸̅𝜔 can be rewritten as 𝐸̅𝜔 = 𝑊𝐿̅𝜔 where W is the mean overland flow length. As W is regarded 

almost a constant (Yang and Paik, 2017; Hack, 1957), the apparent drainage density for the pruning area 𝐴𝑝 = 𝐴̅𝜔 becomes 145 

𝜌𝑎 =
1

𝐴Ω
∑ 𝑁𝑘𝐿̅𝑘

Ω
𝑘=𝜔+1 =

1

𝐴Ω𝑊
∑ 𝑁𝑘𝐸̅𝑘

Ω
𝑘=𝜔+1  .         (15) 

On the other hand, 𝑃(𝐴 ≥ 𝐴𝑝) is defined from geometry as 
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𝑃(𝐴 ≥ 𝐴𝑝) =
1

𝐴Ω
∑ 𝑁𝑘𝐸̅𝑘

Ω
𝑘=𝜔+1           (16) 

which equals to Wa from Eq. (15). As 𝑃(𝐴 ≥ 𝐴𝑝) ∝ 𝐴𝑝
−𝜀 (Eq. (7)), we realize that a∝Ap

− and thereby  =  While equation 

(13) was derived for Ap << A, this alternative derivation shows the power-law regardless of the range in Ap. Earlier, we discussed 150 

the reciprocal nature of two relationships; one between LT and Ao, and the other between L and A. Combining above conclusion 

of  =  and h +  =1, we realize that  =1 – h, indeed implying the compensating function between the two relationships. 

3 Analyses of Real River Networks 

3.1 Data and methods 

To evaluate the power-law Eq. (2) and the derivation of  = , we analyzed real river networks in the contiguous United States. 155 

We have chosen 14 study networks (Fig. 1) from the pool investigated in previous studies of Tarboton et al. (1991), Rodríguez-

Iturbe et al. (1992a), Botter et al. (2007), Hosen et al. (2021), and Carraro and Altermatt (2022). They are carefully selected to 

cover distinct hydro-climatic regions and a range of free-flowing capacity (Table 1). The climate feature is described by the 

Köppen-Geiger climate classification system (Beck et al., 2018). The free-flow characteristic is referred as an integrated 

connectivity status index (CSI) created at a global scale by Grill et al. (2019) for the first time. The CSI comprehensively and 160 

quantitatively describes the capacity of individual river reaches to freely flow based on the synthesis of observed and modelled 

datasets. The reported CSI values, ranging from 0 to 100 %, are the weighted average of estimated five pressure indicators - 

river fragmentation, flow regulation, sediment trapping, water consumption, and infrastructure development in riparian areas 

and floodplains - which represent natural and human inferences within longitudinal, lateral, vertical, and temporal dimensions. 

If a river reach loses connectivity due to any of aforementioned pressures, its CSI value decreases. We calculated a catchment-165 

unit CSI by weighting the length of individual reaches in a given catchment. Our 14 study sites cover the CSI from 58 to 100 % 

which is irrelevant to each catchment size. 

Figure 1. Studied 14 river networks across the contiguous United States and the Köppen-Geiger climate classifications. 
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To shape the structure of each river network at the grid domain, we used the 1 arc-second raster data of flow direction and 

upslope area provided in the National Hydrography Dataset Plus Version 2 (NHDPlusV2) (Mckay et al., 2012). Flow direction 170 

for each cell was assigned through the deterministic 8 method (O'callaghan and Mark, 1984) on the basis of post-processed 

DEM to discard depression or sink cell. Accordingly, upslope area was calculated for each cell. For detailed calculation steps 

and process, readers may refer to the user guide of NHDPlusV2. Detailed layouts of study networks are given in Fig. S1 in the 

Supporting Information (SI). To extract river networks resembling individual blue-lines most, we referred to the source areas 

recorded in the NHDPlusV2. In NHDPlusV2, a channel forming area Ao
* is given for every reach in each network. This is very 175 

detailed information, while Ao in our notion is a single value that can represent the entire network. We draw probability 

distribution of Ao
* for each catchment (Fig. S2 in SI) and Ao was determined as the median (Table 1). Horton-Strahler ordering 

was assigned on the pruned river networks. 

Regarding the exceedance probability distribution of upstream area (Eq. (7)), three segments are often characterized: curved-

head, straight-trunk, and truncated-tail. The head reflects hillslope (Moglen and Bras, 1995; Maritan et al., 1996) while the 180 

trunk indicates channels. As the upslope area becomes close to 𝐴̅Ω, the probability rapidly drops because the size of a network 

is finite (Moglen et al., 1998; Perera and Willgoose, 1998; Rodríguez-Iturbe et al., 1992a). To accommodate such an effect in 

the distribution function, the exponentially tempered power function was adopted (Aban et al., 2006; Rinaldo et al., 2014) as 

𝑃(𝐴 ≥ 𝛿) = 𝑐𝑑𝛿−𝜀 exp(−𝑘𝑑𝛿) , for 𝛿 > 𝐴𝑜         (17) 

where cd is a constant and kd is the tempering parameter. As kd approaches zero, the function represents abrupt truncation. 185 

Similarly, we proposed an exponentially truncated power function for a, as a general form of Eq. (2), as 

𝜌𝑎 = 𝑐𝑝𝐴𝑝
−𝜂 exp(−𝑘𝑝𝐴𝑝) , for 𝐴𝑝 > 𝐴𝑜         (18) 

where cp is a constant and kp is the tempering parameter. To estimate the best fitted parameters, we employed Matlab’s nlinfit 

function of which the objective function is to minimize the sum of the squares of the residuals for the fitted model. The 

estimated range for a parameter was calculated with 95% confidence intervals. 190 

3.2 Results and discussion 

All studied networks well follow the power-law Eq. (1) (Fig. S3 in SI). The range of estimated Hack’s exponent h is 0.55±0.03 

(mean ± standard deviation) with R2 > 0.95 (Table 1), which is within the typical range shown in earlier studies (Hack, 1957). 

The laws of stream number, length, drainage area, and eigenarea (Eq. (6)) are satisfied for all study networks with R2 > 0.85 

(Figs. S4 – S5 in SI). The resultant Horton ratios range as RB = 4.2 ± 0.5, RL = 2.3 ± 0.3, RA = 4.6 ± 0.7, and RE = 2.2 ± 0.3 195 

(Table 1), which are within typical ranges (Horton, 1945; Schumm, 1956; Smart, 1972). These imply that our study networks 

hold statistically robust self-similar features. 

In the exceedance probability distributions of upstream area, three segments of curved-head, straight-trunk, and truncated-tail 

are clearly characterized for all study catchments (Fig. S6a in SI). The visual interpretation is well demonstrated by the results 

of parameters fitted through Eq. (17) (mean squared error values < 2×10-8). The tempering parameter kd values are very small 200 

for all river networks, indicating an abrupt truncation in the tail part (Table 1; Fig. S6b in SI). The power-law exponent  

ranges as 0.45 ± 0.02 (Table 1), which agrees with the range reported in earlier studies (e.g., Rodríguez-Iturbe et al., 1992a). 

 values estimated in our study networks satisfy the coupled relation with Hack’s exponent h, resulting in  + h = 1.00 ± 0.03. 

The a–Ap relationship is plotted over all possible value of Ap from the area of a single DEM cell (~900 m2) to the drainage 

area at the direct upstream of the basin outlet. The plot greatly resembles the 𝑃(𝐴 ≥ 𝛿) distribution, exhibiting three segments 205 

of curved-head, straight-trunk, and truncated-tail (Fig. 2a). The representative source area Ao as the median of a given Ao
*

 

distribution is clearly located in the upper part of straight-trunk section for all studied rivers, i.e., Ao = 0.29 ± 0.12 km2. For 
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each study network, both minimum and maximum Ao
* are also laid within the trunk section, summarized as the minimum Ao

*
 

= 0.04 ± 0.02 km2 and the maximum Ao
*

 = 3.86 ± 3.40 km2.  

Indeed, Eq. (18) satisfies quantitative description of the a–Ap relationship for all study rivers (mean squared error values < 210 

10-3). The fitted tempering parameter kp is nearly zero, corroborating the extremely sharp cut-off in the tail of a distribution (Table 

1; Fig. 2b). The power-law exponent   ranges as 0.45 ± 0.04 (Table 1), which is close to but slightly smaller than the ranges 

of 0.48 ± 0.04 reported in Moglen et al. (1998) for 7 catchments with the median size of 30 km2, and 0.47 ± 0.12 in Prancevic 

and Kirchner (2019) for 17 small mountainous catchments with the median size of 1.1 km2. Integrating these earlier empirical 

outcomes and results from this study, it is clear that mostly  < 0.5. Further exploration linked to this dimensional inconsistency 215 

and fractal dimensions is given in the next section. 

For every study network, the fitted  value is very close to its  value (difference in % = 0.47 ± 0.30), which supports our 

theoretical derivation of  =  in Sect. 2.2. This means that the scaling exponent  also has intimate relation with h to be  + h ~ 

1. In addition, the entire shapes of the two distributions are almost identical given  ≈  as well as kd ≈ kp. The findings suggest 

that known physical meaning of  can provide insights into what  physically stands for. By investigating the full range of binary 220 

trees from totally random to completely deterministic, Paik and Kumar (2007) highlighted that  represents how compact the 

hierarchy of a given binary network is. Since they deal with tree topology,  can be more explicitly expressed as ‘compactness of 

topological hierarchy.’ In the consistent context, ‘compactness of geometric hierarchy’ can be symbolized by  that is dependent 

on the concrete term of stream length. 

Figure 2. Relationship between the apparent drainage density a and the pruning area Ap for 14 studied river networks. (a) 225 

Distribution of a over varying Ap in a log-log scale. The averaged  is calculated as 0.45. Bold black line indicates the average 

of all Ao values reported in Table 1. Dashed lines depict the average of minimum and maximum Ao
* values shown in Fig. S2 

in SI. (b) Normalized Ap–a distribution by individual power-law exponents. Color-codes for each catchment is consistent 

between (a) and (b).  
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4 Interpretation of Dimensional Inconsistency in η 

It is worthwhile to investigate η from dimensional perspective. Although η = 0.5 is anticipated for dimensional consistency 

(Tarboton et al., 1991), observed values are smaller than this in every network (see Table 1). As stated earlier, an analogous issue 235 

resides in Eq. (1): h is expected to be 0.5 but observed values are mostly greater. This inconsistency was relaxed by introducing 

the fractal dimension of a stream as Ds=2h (Mandelbrot, 1977), which was based on the assumption that the shapes of 

catchments are self-similar in a downstream direction (Feder, 1988; Rigon et al., 1996). For a stream reach, the fractal nature 

stems from stream sinuosity. Considering the typical range of h, Ds is greater than unity, i.e., exceeding the dimension of a 

line, and mostly between 1 and 1.4 (Rosso et al., 1991). Motivated by this, we hypothesized that the deviation of the observed 240 

η values from 0.5 implies the presence of non-integer fractal dimension of the topography. We sought for a simple expression of 

η as a function of fractal dimension, like h = Ds/2. As η =  = 1 – h, from h = Ds/2 it is clear that 

𝜂 = 1 − 𝐷𝑠 2⁄ .            (19) 

We found that η values estimated from Eq. (19) well agrees with observed values. 

However, above relationship is deceptive as Eq. (19) is identical to  + h = 1 given Ds=2h. To resolve this issue, an independent 245 

relationship for Ds should be introduced. We can employ the expression of Ds from Horton ratios (Rosso et al., 1991) as 

𝐷𝑠 = max(1, 2 ln𝑅𝐿 ln𝑅𝐴⁄ ).           (20) 

Two extreme values of Ds, i.e., 1 (a line with no sinuosity) and 2 (full sinuosity of streams filling a plane), correspond to cases 

of RA = RL
2 and RA = RL, respectively. Our 14 study networks show the Ds range of 1.10 ± 0.10 (Table 1). Substituting Eq. (20) 

into Eq. (19) gives 250 

𝜂 = 1 − ln 𝑅𝐿 ln 𝑅𝐴⁄ .           (21) 

While Ds represents the fractal dimension originated from the aforementioned fractal stream (single corridor), there is another 

fractal nature stemming from the network organization of stream branches. Denoting the fractal dimension covering the latter 

feature as Db, La Barbera and Roth (1994) derived an expression of  as a function of two fractal dimensions Ds and Db. As η 

=, we can use their derivation as 255 

𝜂 = 𝜀 = 𝐷𝑠(𝐷𝑏 − 1) 2⁄ .           (22) 

For Db, we refer to the equation of La Barbera and Rosso (1989) as  

𝐷𝑏 = min(2,  ln𝑅𝐵 ln𝑅𝐿⁄ ).           (23) 

According to Eq. (23), the lower and upper limits in Db (1 and 2) correspond to the cases of RB = RL and RB = RL
2, respectively. 

Considering the typical ranges of RB and RL found in river networks, Db is mostly between 1.5 and 2 (Rosso et al., 1991; La 260 

Barbera and Rosso, 1989), and our study networks present  Db ranging 1.73 ± 0.16 (Table 1). Substituting Eqs. (20) and (23) 

into (22) yields 

𝜂 = ln(𝑅𝐵/𝑅𝐿) ln 𝑅𝐴⁄ .           (24) 

In that both Ds and Db are considered, Eq. (24) is regarded as a general form of Eq. (21). Indeed, one can notice that Eq. (24) 

becomes Eq. (21) if RB = RA. As stated, empirical findings suggest RB ≈ RA, but calculated η can be sensitive to their differences. 265 

For RB < RA, which are found in most of our study networks (Table 1), Eq. (24) gives smaller value for η than Eq. (21). 

Whilst Eq. (24) is regarded as a general expression of η as a function of Horton ratios, derived on the foundation of fractal 

dimension studies, we can suggest another relationship which is from a very different perspective. Examining analyzed results, 

we found =Db, the linear tendency. Further, the coefficient is fairly invariant as  = 0.26±0.01, from our 14 networks, which 

is very close to 1/4. Interestingly, this is similar to the quarter-power scaling laws widely found in self-similar biological 270 
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systems, such as the Kleiber’s law (Ballesteros et al., 2018; Kleiber, 1932). Motivated by this finding and inspired by the 

simple expression of h = Ds/2, we suggest 

𝜂 = 𝐷𝑏/4 = (ln𝑅𝐵/ln𝑅𝐿)/4.          (25) 

For all studied river networks,  values estimated from Eqs. (24) and (25) were compared with those observed from the a–Ap 

relationship (Fig. 3). Between two, Eq. (24) yields much greater deviations from observations, and mostly under-estimates 275 

 values. It is interesting that the simple Eq. (25) is well supported by analysis results, with the estimated  mean of 0.44 under 

merely ~6 % difference from the observed , which is around half of that calculated for Eq. (24). The inter-networks variability 

of the estimated  for each equation is fairly similar to that of the observed values (standard deviation = 0.06 and 0.04 for Eqs. 

(24) and (25), respectively). 

We perceive the poor performance of Eq. (24) as the consequence of weak assumptions which form the basis of theoretical 280 

derivations of Eqs. (20) and (23), i.e., Horton’s laws hold precisely at all scales of a unit length to measure (La Barbera and 

Rosso, 1989; Rosso et al., 1991). Indeed, this assumption is too ideal to be satisfied in real river networks, as corroborated in 

the non-perfect straight fits when estimating Horton’s ratios of our studied networks (Figs. S4- S5 in SI). For Ds, the stream 

sinuosity cannot be directly analyzed with our DEM analysis due to limited resolution, and so large uncertainty is embedded. As 

a result, Ds values estimated from Eq. (20) (shown in Table 1) differ from Ds=2h with h in Table 1 (Mandelbrot, 1977). About 285 

Db, the importance of fulfilling the assumption to employ Eq. (23) is also demonstrated by Phillips (1993) studying very small 

catchments in the Southern Appalachians in the USA. 

Figure 3. Comparison of  value observed from the a–Ap relationship (Eq. (18)), with  values estimated as the functions of 

the fractal dimensions expressed as the Horton ratios. Results of Eqs. (24) and (25) are presented as hollow-circle and filled-

square markers, respectively. Color-codes for our studied river networks are the same as indicated in Fig. 2. 290 
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As shown in Fig. 3, estimated/observed  values are less than 0.5. This can be understood in three perspectives. First, taking 

Eq. (25), 0.5 becomes the upper limit of , given the physical range of 1 ≤ Db ≤ 2. Second, the finding of  < 0.5 can also be 

understood from earlier studies on , given  = . In earlier studies about Eq. (7), ε < 0.5 is reported for most river networks 

(Rodríguez-Iturbe et al., 1992a; Crave and Davy, 1997). As Eq. (7) is about probability, no attention has been given to its  295 

dimensional consistency. Nevertheless, in theory, random critical trees should follow ε ≈ 0.5 (Harris, 1963). Paik and Kumar 

(2007) investigated trees, ranging from purely deterministic to completely random, and according to observed  values, river 

network organization is based on self-repetitive trees with some randomness in connectivity structure. In their follow-up study, 

Paik and Kumar (2011) dealt with more scaling laws of river networks to investigate the roles of the connectivity structures in 

tree organizations. Particularly for Hack’s law analysis, they corroborated that partially random trees grounded on deterministic 300 

self-repetitive trees only exhibited the Hack’s exponent h within the range found from river networks. 

Lastly,  < 0.5 can be explored from plausible optimality in the network formation. To explain physical mechanisms resulting 

the connectivity pattern of treelike river structures, various optimality hypotheses have been proposed, such as minimizing 

total energy expenditure (Rodríguez-Iturbe et al., 1992b; Rinaldo et al., 2006), total stream power (Chang, 1979), and total 

energy dissipation rate (Yang and Song, 1979), as summarized in Paik and Kumar (2010). Although debates on the physical 305 

mechanisms are still ongoing (Paik, 2012), the typical hypotheses share the underlying principle: direct connectivity from 

individual elements to a common outlet is maximized while total length of flow paths is minimized, in turn efficient flow 

connection under a given space. It is noteworthy that optimal channel networks, which were created towards achieving the 

minimum total energy expenditure, showed the satisfactions of Hack’s law with h ~ 0.6 (Ijjasz-Vasquez et al., 1993) and the 

area-exceedance probability distribution with  ~ 0.44 (Carraro et al., 2020). The results suggest that the minimization of total 310 

energy expenditure needs to be considered not as a necessary condition but a sufficient condition. The notion of optimality 

resides in the quarter-power scaling laws which is linked to Eq. (25). West et al. (1997) suggested a coarse-grained zeroth 

order theory to explain the emergence of the quarter-power scaling laws in biological systems, based on three essential and 

generic properties of networks in organisms: (1) space filling to serve sufficient resources to everywhere in a system, (2) 

invariant size and characteristics of terminal units, and (3) optimized designs to minimize energy loss. According to their 315 

theory (West et al., 1999; West, 2017), the ubiquitous number ‘four’ in the scaling law exponents indicates the total number 

of domains that all metabolic mechanisms are operated through optimized space-filling branching networks, thereby as a sum 

of the normal three domains representing three-dimensional appearance, and the additional one domain revealing fractal 

dimension feature. Indeed, it is broadly recognized that river network is an excellent analogue of biological networks in living 

organisms (Banavar et al., 1999). It implies that the interpretation for the number ‘four’ in the quarter-power scaling laws in 320 

biology may help to obtain a mechanism-based insight on the role of denominator ‘four’ in Eq. (25) for river networks of 

which fractal structures have been explained by optimality hypotheses. 

5 Summary and Conclusions  

Thorough investigations on the power-law relationship between the apparent drainage density a and the pruning area Ap with 

the exponent of  were conducted. We unraveled the meanings of  with dimensional inconsistency in diverse aspects. We 325 

analytically demonstrated that  is equivalent to the fractal scaling exponent  in the area-exceedance probability distribution, 

based on a hypothetical network following the Hortonian tree framework. This pinpointed the coupled relationship between  

and Hack’s exponent h that is also deviated from the dimensional consistency, i.e., ( =  ) + h = 1. 

Our arguments are well supported by evidence from many real river networks, analyzed with NHDPlusV2 dataset. Analyzed 

networks in this study cover wide ranges of climatic and free-flow connectivity conditions over the contiguous United States. 330 
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The a–Ap relationships for all studied catchments were obviously distinct into curved-head, straight-trunk and truncated-tail 

parts, which is identical shape as the area-exceedance probability distributions. We showed that the range of extracted source 

areas was clearly overlapped with the upper part of the straight-trunk section in each a–Ap distribution. Our findings 

highlighted that the empirical analyses results are in good agreement with the analytically found ones. It suggested that two 

scaling exponents  and  are fundamentally identical but conceptually distinguishable, since geometric and topological 335 

attributes are inherent in the calculation procedure for  and , respectively. Hence, we enabled to define physical meaning of 

 as ‘compactness of geometric hierarchy.’ 

We further examined the physical implication of   based on non-integer fractal dimensions. Such effort was elaborated as 

expressing  as the functions of fractal dimensions on a single stream and the entire river organization, including the quarter-

power scaling relationship. Despite the presence of inevitable uncertainty in quantifying fractal dimensions, the estimated 340 

 values were likely aligned with the observed ones for all studied rivers. Given that, this study contributed to deeper 

understanding of the a–Ap relationship. Our findings, further, lay the foundation of future studies on the interlinkage between 

fractal dimensions and indicators characterizing self-similar structures of river networks. 

Overall, our study sites followed representative scaling laws of river networks, despite the differences in climate condition and 

connectivity level. In particular, our findings suggest that the interplay between  and h for rivers is insensitive to the diverse 345 

conditions. It leads to a natural curiosity whether the diversity scope of the conditions was not sufficient or critical 

anthropogenic stressors were missing to uncover exceptional real river networks exhibiting the deviation from the well-known 

scaling properties. A follow-up study may need to resolve such curiosity with extended study sites at a global scale and 

additional descriptors for anthropogenic effects on river network structures and functions. 
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